a2 United States Patent
Kang et al.

US009058253B2

US 9,058,253 B2
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) DATA TREE STORAGE METHODS, SYSTEMS
AND COMPUTER PROGRAM PRODUCTS
USING PAGE STRUCTURE OF FLASH
MEMORY

(75) Inventors: Dong-Won Kang, Seoul (KR);
Jeong-Uk Kang, Gyeonggi-do (KR);
Jin-Soo Kim, Daejeon (KR); Chan-1k
Park, Seoul (KR)

(73) Assignee: Samsung Electronics Co., Ltd. (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 863 days.

(21) Appl. No.: 12/167,324

(22) Filed: Jul. 3,2008

(65) Prior Publication Data
US 2009/0012976 Al Jan. 8, 2009

(30) Foreign Application Priority Data
Jul. 4,2007 (KR) oo 10-2007-0067129

(51) Imt.ClL
GO6F 17/30
GO6F 12/02

(52) US.CL
CPC GOG6F 12/0246 (2013.01); GOGF 2212/7202

(2013.01); GO6F 2212/7206 (2013.01)

(58) Field of Classification Search
CPC it GOG6F 17/30961
USPC ittt 707/100, 797
See application file for complete search history.

(2006.01)
(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,123,104 A * 6/1992 Levineetal. ..o /1
5,568,423 A * 10/1996 Jouetal. ... 365/185.33
5,694,608 A * 12/1997 Shostak ..o 715/236

5,860,083 A * 1/1999 Sukegawa 711/103
5,893,125 A * 4/1999 Shostak 715/206
5,906,000 A * 5/1999 Abeetal. . . 71151
7,383,276 B2* 6/2008 Lometccoceoveevvrviniiiiennn /1
7,761,474 B2* 7/2010 Locketal.coceee. 707/797
7,856,437 B2* 12/2010 Kirshenbaum 707/737
2005/0144360 Al 6/2005 Bennett et al.
2005/0171960 Al* 82005 Lometccceevvvrvrnnennee 707/100
2006/0004715 Al* 12006 Locketal. ...cccooevevenenn 707/3
2007/0016756 Al 1/2007 Hsieh et al.
(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2000-222292 8/2000
KR 1020010064226 A 7/2001
(Continued)
OTHER PUBLICATIONS

Joo et al.; MFIU: An Efficient Index Buffer Management Scheme for
a B+ Tree on NAND Flash Memory;, (English Abstract); Korea Infor-
mation Science Conference (2007) Korea; Computer General vol. 34,
Issue 1 (2007), pp. 92-97.

(Continued)

Primary Examiner — Sheree Brown

(74) Attorney, Agent, or Firm — Myers Bigel Sibley &
Sajovec, P.A.

(57) ABSTRACT

A tree data structure is stored in a flash memory device by
storing a leaf node and an index node comprising a pointer to
the leaf node in a same page of the flash memory device,
which may be read on a per-page basis. A modified version of
the leaf node and a modified version of the index node may be
stored in a new page of the flash memory device when, for
example, akey value is added to or deleted from the leafnode.

5 Claims, 15 Drawing Sheets

H=3

Page

P1 P2 P3 P4 P5 P6

US 9,058,253 B2

Page 2
(56) References Cited KR 1020060106993 A 10/2006
™ M288401 U 3/2006
U.S. PATENT DOCUMENTS ™ 1288328 B 10/2007
2008/0071809 AL* 3/2008 LOMEt oorrerrerrerrerrerrrrn, 707/100 OTHER PUBLICATIONS
2009/0024565 Al* 1/2009 Wong 7072

FOREIGN PATENT DOCUMENTS

KR 1020040072875 A
KR 1020060095206 A

8/2004
8/2006

Nam et al.; Design and Implementation of B-Tree on Flash Memory;
(English Abstract); Information Science Letters; vol. 34, Issue 2
(2007); pp. 109-118.

* cited by examiner

U.S. Patent Jun. 16, 2015 Sheet 1 of 15 US 9,058,253 B2

Fig. 1
A l
(a) B C H=3
D E F
Page

P1 P2 P3 P4 P5 P6

Fig. 2

1 Valid node
Inval id node

Page

P1 P2 P3 P4 P5 P6 P7 P8 P9

U.S. Patent Jun. 16, 2015 Sheet 2 of 15 US 9,058,253 B2

Fig. 3
1 Valid node A
Invalid node
(e) B C
D E F
Page
T
1B
(f)
FIE|D
P1 P2 P3
Fig. 4
[Valid node o
[nval id node
() B }
D E F'
Page

P1 P2 P3 P4

U.S. Patent Jun. 16, 2015 Sheet 3 of 15 US 9,058,253 B2

Fig. 5

[Valid node X

Inval id node <
(i) B ! c'

D E F G
i t
nser Page
A'
‘ C
()
FIE|ID]|G
P1 P2 P3 P4
Fig. 6
(1 Valid node -
Invalid node
(k) B' C
D T E [F
Delet
elete Page

P1 P2 P3 P4

U.S. Patent Jun. 16, 2015 Sheet 4 of 15 US 9,058,253 B2

Fig. 7
1 Valid node ~—
Invalid node A
w B c
et |
LD F G
Del
elete -
1C
(n)
P1 P2 P3 P4
Fig. 8
Root E@%} }512 bytes
831
Root - 842 }512 bytes
821
832 843 [11024 bytes

Root

s | => =>

822 833 844 112048 bytes

1 2 3 4 Height(H)

U.S. Patent Jun. 16, 2015 Sheet 5 of 15 US 9,058,253 B2

Fig. 9A

X1

X2

US 9,058,253 B2

Sheet 6 of 15

Jun. 16, 2015

U.S. Patent

vld Eld ¢ld Lid

¢ LI

Lid

T
| |
(05/52)1(06/92)

aeX

(06/0G)
X

w

!

,

!

!
————
_

(05/06)!

_
_
_
_
_
_
_
| _

[
|
|
.
_
L

0S/6t) (0G/6%)

X

apou Pl |BAU]

opou piiep]

U.S. Patent

Jun. 16, 2015

Fig. 9C

X1

Sheet 7 of 15

X0

Xl

X22

X12

US 9,058,253 B2

U.S. Patent Jun. 16, 2015 Sheet 8 of 15 US 9,058,253 B2

Insert key value —— 1000

~_ oot node full ? ;ﬂrﬁﬂ 1010

Yes
v

Divide root node X1 into

two nodes X11 and X12 —— 1020

Y

Increase height of U-tree by 1 f~—1030

¥

Generate new root node —~— 1040

Y

End

U.S. Patent Jun. 16, 2015 Sheet 9 of 15 US 9,058,253 B2

Fig. 11A

Y2

US 9,058,253 B2

Sheet 10 of 15

Jun. 16, 2015

U.S. Patent

2ed 12d
(05/1) |(05/92)
SA A
(Ge/1) |(0s/01)
CA
(52/2)
LA

apouU pijBAUT

spou prien]

U.S. Patent Jun. 16, 2015 Sheet 11 of 15 US 9,058,253 B2

Fig. 11C

N
__4__/\,_5____1
Y2 L Y3 _JI
=
| 1
Y4 L Y5 _Ji

Delete

U.S. Patent

Jun. 16, 2015 Sheet 12 of 15

Delete key value

US 9,058,253 B2

—— 1200

Number of child nodes
Qf root node =1 7

Yes

1210

Decrease height of 4—tree by 1

—— 1220

A

Correct root node

—— 1230

\i

End

U.S. Patent Jun. 16, 2015 Sheet 13 of 15 US 9,058,253 B2

Fig. 13
1300
1301
1310 1340
Processor fe=—= |e—= MF lash
emory
1320 1350
Display s - - ROM
1330 1360
Keyoad ~ f=—= |=—= RAM

U.S. Patent Jun. 16, 2015 Sheet 14 of 15 US 9,058,253 B2

Fig. 14

1410 1420

///// 1422 1424
; ;

Host Memory Flash
Controller Memory

U.S. Patent

Jun. 16, 2015 Sheet 15 of 15

Fig. 195

1501 }’/
1510 /\< 1540
/ /

US 9,058,253 B2

Processor = - SSD
1520 1550

Display - - - ROM
1530 1560

Keypad < = RAM

US 9,058,253 B2

1

DATA TREE STORAGE METHODS, SYSTEMS
AND COMPUTER PROGRAM PRODUCTS
USING PAGE STRUCTURE OF FLASH
MEMORY

RELATED APPLICATIONS

This application claims priority from Korean Patent Appli-
cation No. 10-2007-0067129, filed Jul. 4, 2007, the disclosure
of which is hereby incorporated herein by reference in its
entirety.

BACKGROUND OF THE INVENTION

The present invention relates to a flash memory devices and
methods of operation thereof, and more particularly, to data
storage methods, systems and computer program products for
flash memory devices.

A flash memory device is a nonvolatile memory device that
can retain data in a memory chip even without power.
Although the flash memory device typically is slower than a
dynamic random access memory (DRAM) used, for example,
as a main memory of a personal computer (PC), it typically is
higher in read speed and more robust against impact than a
hard disk. In addition, the flash memory device typically is
resistant to damage from environmental impacts, such as high
pressure and boiling water. Because of these characteristics,
the flash memory device is widely used as a storage unit in
devices that are operated with a battery.

A flash memory device is an electrically erasable/program-
mable nonvolatile memory device. A typical flash memory
device may be erased and programmed on a block-by-block
basis. Because flash memory devices typically are relatively
inexpensive, they are widely used as a high-capacity solid-
state nonvolatile storage. Typical examples of the use of the
flash memory are in digital music players, digital cameras,
and cellular phones. Flash memory devices are also used in
universal serial bus (USB) drives, which are widely used to
store and transfer data between computers.

Because a hard disk drive mechanically drives a magnetic
disk to read/write data, there generally are structural limita-
tions on increasing the operation speed of a hard disk.
Because of this, attempts have been made to use flash memory
for high-capacity storage to replace hard disk drives. For
example, a system booting speed may be increased when a
boot code is stored in a flash memory.

SUMMARY OF THE INVENTION

Some embodiments of the present invention provide an
indexing scheme for a flash memory.

Embodiments of the present invention provide indexing
methods based on a tree structure of a flash memory including
a plurality of pages, the indexing methods including: storing
a leaf node and an index node related to the leaf node in the
same page of the flash memory.

In some embodiments, each of the pages stores an up to k
number of leaf nodes and/or index node, k being a positive
number.

In other embodiments, the flash memory is read or written
on a page basis.

In further embodiments, the number of the leafnodes or the
index nodes stored in the page depends on the height of the
tree.

In still further embodiments, the uppermost index node
among the index nodes is a root node.

10

15

20

25

30

35

40

45

50

55

60

65

2

In still further embodiments, the indexing methods further
include correcting the leaf node.

In still further embodiments, the correcting of the leaf node
includes: changing a pointer of the index node related to the
leaf node to be corrected; and storing the leaf node to be
corrected and the corrected index node in a new page.

In still further embodiments, the indexing methods further
include inserting a new leaf node.

In still further embodiments, the inserting of the new leaf
node includes: changing a pointer of the index node related to
the new leaf node; and storing the new leaf node and index
nodes related to the new leaf node in a new page.

In still further embodiments, the inserting of the new leaf
node further includes: determining whether the index node
related to the new leaf node is full; if the index node related to
the new leaf node is full, dividing the index node into a first
index node and a second index node; and generating an upper
node of the first and second index nodes.

In still further embodiments, the indexing methods further
include inserting a new key value in the leaf node.

In still further embodiments, the inserting of the new key
value includes: determining whether the leaf node, in which
the new key value is to be inserted, is full; if the leaf node, in
which the new key value is to be inserted, is full, dividing the
leaf node into a first leaf node and a second leaf node; and
inserting the new key value in one of the first and second leaf
nodes.

In still further embodiments, the first and second leaf nodes
are stored respectively in new pages of the flash memory.

In still further embodiments, the inserting of the new key
value further includes: determining whether the index node
related to the leaf node, in which the new key value is inserted,
is full; if the index node related to the new leaf node is full,
dividing the index node into a first index node and a second
index node; and generating an upper index node of the first
and second index nodes.

In still further embodiments, the first index node is stored
in the same page as one of the first and second leafnodes, and
the second index node is stored in a new page together with
the upper index node.

In still further embodiments, the indexing methods further
include deleting the leaf node.

In still further embodiments, the deleting of the leaf node
includes: determining whether the index node related to the
deleted leaf node designates another leaf node; and deleting
the index node if the index node related to the deleted leaf
node does not designate another leaf node.

In still further embodiments, the deleting of the leaf node
further includes: decreasing the height of the tree by 1 ifa root
node of the tree has one child node; and setting the child node
of the root node as a new root node.

In still further embodiments, the deleting of the leaf node
further includes storing the new root node in a new page.

In still further embodiments, the indexing methods are
based on a p-tree structure.

In other embodiments of the present invention, systems
include: a flash memory including a plurality of pages; and a
processor accessing the flash memory, wherein the processor
performs the above-described indexing methods.

Some embodiments of the present invention provide meth-
ods of storing tree data structures in a flash memory device in
which a leaf node and an index node comprising a pointer to
the leaf node are stored in a same page of the flash memory
device. A modified version of the leaf node and a modified
version of the index node may be stored in a new page of the
flash memory device when, for example, a key value is added
to or deleted from the leaf node. The modified version of the

US 9,058,253 B2

3

index node may include a pointer to the new page. A maxi-
mum number of nodes of the tree structure storable in a page
of'the flash memory device may depend on a height of the tree
data structure, and a maximum size of a node of the tree data
structure may be dependent on a level of the node in the tree
data structure.

In further embodiments, storing a modified version of the
leaf node and a modified version of the index node in a new
page of the flash memory device may include dividing the leaf
node into a first leaf node and a second leaf node if the leaf
node is full, inserting a new key value in one of the first and
second leaf nodes and storing the first and second leaf nodes
in respective new pages of the flash memory. Storing a modi-
fied version of the leaf node and a modified version of the
index node in a new page of the flash memory device may
further include dividing the index node into a first index node
and a second index node if the index node is full, generating
a higher-level index node pointing to the first and second
index nodes, storing the first index node in a first one of the
new pages and storing the second index node and the higher-
level index node in a second one of the new pages.

In further embodiments, the index node and the leaf node
include a first index node and first leaf node of a first branch
from a higher-level node shared with a second branch includ-
ing a second index node and a second leaf node. Storing a leaf
node and an index node including a pointer to the leaf node in
a same page of the flash memory may include storing the first
leaf node and the first index node in a first page. The higher-
level node may be stored in the first page, the second leafnode
and the second index node may be stored in a second page. It
may be detected that removal of a key value from the first leaf
node would result in no key values remaining in the first leaf
node and that the first index node includes no other pointer to
a leaf node. In response, a modified version of the second
index node may be stored in a third page. This may eliminate
the higher-order node from the tree data structure.

Further embodiments of the invention may provide a sys-
tem including a processor configured to perform the above-
described operations. Still further embodiments may provide
computer-readable storage media including computer pro-
gram code embodied therein configured to execute on a com-
puter, the computer program code including computer pro-
gram code configured to perform the above-described
operations.

In additional embodiments, a system includes a flash
memory device including a plurality of pages and a processor
operatively associated with the flash memory device and con-
figured to store a leatnode of a tree data structure and an index
node including a pointer to the leafnode in a same page of the
flash memory. The processor may be configured to operate
the flash memory device as a solid state disk (SSD).

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures are included to provide a further
understanding of the present invention, and are incorporated
in and constitute a part of this specification. The drawings
illustrate exemplary embodiments of the present invention
and, together with the description, serve to explain principles
of the present invention. In the figures:

FIG. 1is a diagram illustrating an example where a typical
B+ tree structure is stored in a flash memory;

FIG. 2 is a diagram illustrating an example where a cor-
rection is made of any leaf node in a B+ tree structure and then
a changed B+ tree structure is stored in a flash memory;

15

20

25

30

40

45

50

55

60

65

4

FIG. 3 is adiagram illustrating a scheme for storing a p-tree
in a flash memory according to some embodiments of the
present invention;

FIG. 4 is a conceptual diagram illustrating a scheme for
correcting a leaf node of the pi-tree stored in the flash memory
illustrated in FIG. 3, according to some embodiments of the
present invention;

FIG. 5 is a conceptual diagram illustrating a scheme for
inserting a new leaf node in the p-tree stored in the flash
memory illustrated in FIG. 3, according to some embodi-
ments of the present invention;

FIG. 6 is a conceptual diagram illustrating a scheme for
deleting a leaf node of the p-tree stored in the flash memory
illustrated in FIG. 3, according to some embodiments of the
present invention;

FIG. 7 is a conceptual diagram illustrating a scheme for
deleting a leaf node of the p-tree stored in the flash memory
illustrated in FIG. 6, according to some embodiments of the
present invention;

FIG. 8 is a diagram illustrating that the maximum storable
size of a leaf/index node stored in one page changes with an
increase in height (H);

FIG. 9A is a diagram illustrating an example of a p-tree
including a root node and a leaf node;

FIG. 9B is a diagram illustrating an exemplary process for
inserting a key value in the leaf node of the pi-tree illustrated
in FIG. 9A;

FIG. 9C is a diagram illustrating a changed p-tree resulting
from the key value insertion process illustrated in FIG. 9B;

FIG. 10 is a flowchart illustrating a process for inserting a
key value in a leaf node of a p-tree under the control of a
processor;

FIG. 11A is a diagram illustrating an example of a p-tree
for describing a key value deletion scheme for a pi-tree;

FIG. 11B is a diagram illustrating an exemplary process for
deleting a key value from any leaf node of the p-tree illus-
trated in FIG. 11A;

FIG. 11C is a diagram illustrating a changed p-tree struc-
ture resulting from the key value deletion process for the
p-tree illustrated in FIG. 11A;

FIG. 12 is a flowchart illustrating a process for deleting a
key value from a leaf node of a p-tree under the control of a
processor;

FIG. 13 is a block diagram of an electronic device using an
indexing scheme according to some embodiments of the
present invention;

FIG. 14 is a block diagram of a memory system using an
indexing scheme according to some embodiments of the
present invention; and

FIG. 15 is a block diagram of another electronic device
using an indexing scheme according to some embodiments of
the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

The invention is described more fully hereinafter with ref-
erenceto the accompanying drawings, in which embodiments
of'the invention are shown. This invention may, however, be
embodied in many different forms and should not be con-
strued as limited to the embodiments set forth herein. Rather,
these embodiments are provided so that this disclosure will be
thorough and complete, and will fully convey the scope of the
invention to those skilled in the art.

In the drawings, the sizes or configurations of elements
may be idealized or exaggerated for clarity. It will be under-
stood that when an element is referred to as being “connected
t0” or “coupled to” another element, it may be directly con-

US 9,058,253 B2

5

nected or coupled to the other element or intervening ele-
ments may be present. In contrast, when an element is
referred to as being “directly connected to” or “directly
coupled to” another element, there are no intervening ele-
ments present. Like numbers refer to like elements through-
out. As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.

It will be understood that, although the terms first, second,
third etc. may be used herein to describe various elements,
components and/or sections, these elements, components
and/or sections should not be limited by these terms. These
terms are only used to distinguish one element, component, or
section from another element, region or section. Thus, a first
element, component or section discussed below could be
termed a second element, component or section without
departing from the teachings of the present invention.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood
that terms, such as those defined in commonly used dictio-
naries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art
and this specification, and will not be interpreted in an ideal-
ized or overly formal sense unless expressly so defined
herein.

Throughout the specification, the terms “write” and “pro-
gram” have the same meaning.

Embodiments of the present invention are described below
with reference to schematic diagrams illustrating methods,
apparatus (systems and/or devices) and/or computer program
products. It is understood that a block of the diagrams, and
combinations of blocks in the diagrams, may be implemented
by computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, and/or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer and/or other programmable data
processing apparatus, create means (functionality) and/or
structure for implementing the functions/acts specified in the
diagrams. These computer program instructions may also be
stored in a computer-readable memory that may direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instructions which implement the
function/act as specified in the diagrams. The computer pro-
gram instructions may also be loaded onto a computer or
other programmable data processing apparatus to cause a
series of operational steps to be performed on the computer or
other programmable apparatus to produce a computer-imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide steps
for implementing the functions/acts specified in the dia-
grams.

30

40

45

6

Accordingly, the present invention may be embodied in
hardware and/or in software (including firmware, resident
software, micro-code, etc.). Furthermore, the present inven-
tion may take the form of a computer program product on a
computer-usable or computer-readable storage medium hav-
ing program code (instructions) embodied in the computer-
readable storage medium for use by or in connection with an
instruction execution system. In the context of this document,
a computer-usable or computer-readable storage medium
may be any medium that may contain, store, communicate or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The computer-usable or computer-readable storage
medium may be, for example, an electronic, magnetic, opti-
cal, electromagnetic or semiconductor system, apparatus or
device. More specific examples (a non-exhaustive list) of the
computer-readable storage medium would include the fol-
lowing: a portable computer diskette, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), and a portable optical and/or magnetic media, such
as a flash disk or CD-ROM.

A p-treeis a tree structure of a modified B-tree and includes
aleafnode and an index node. The leaf node includes sequen-
tial data, i.e., key values, which are arranged in ascending
order. The index node includes key values and pointers for
searching for the key value in the leaf node. Unlike a B-tree,
a p-tree has leaf nodes constituting a linked list in sequential
order and thus the key values of the pi-tree may be processed
sequentially. This p-tree is widely used as an index for access-
ing a database or data stored in a storage medium such as a
hard disk. Some embodiments of the present invention pro-
vide a new Ji-tree structure.

FIG. 1 is a diagram illustrating an example where a typical
B+ tree structure is stored in a flash memory. Referring to
FIG. 1, a B+ tree (a) has a height (H) of 3, 3 leaf nodes, and 3
index nodes. That is, reference symbols D, E and F denote the
leaf nodes, and reference symbols B, C and A denote the
index nodes. The uppermost index node A among the index
nodes is called a root node. “Root node=Leaf node” if the
height of a B+ tree is 1; and “Root node=Index node” if the
height of a B+ tree is 2 or more.

The index nodes each include key values and pointers. For
example, the index node A includes page addresses P5 and P4
of the index nodes B and C, and the index node B includes
page addresses P3 and P2 of the leaf nodes D and E.

The index nodes and the leaf nodes of the B+ tree (a) are
stored respectively in pages of a flash memory (b). In general,
a flash memory is erased on a block basis and is read/written
on a page basis.

FIG. 2 is a diagram illustrating an example where a cor-
rection is made of any leaf node in a B+ tree structure and then
a changed B+ tree structure is stored in a flash memory.
Generally, in a flash memory, an erase operation must be
performed in order to write new data in a cell where data have
already been written. If new data are to be written without an
erase operation, the new data must be written in a new page
that has been erased. Thus, in order to insert/delete a key vale
in/from a leafnode F of a B+ tree (¢), a corrected leaf node F'
must be written in a new page P7 of a flash memory (d). An
index node C must be corrected to an index node C' to desig-
nate the page P7 of the leaf node F', and also an index node A
must be corrected to an index node A' to designate a page P8
where the index node C' has been stored. In this way, the
correction of the leaf node F leads to the corrections of the
index nodes C and A related to the leafnode F. That is, a write

US 9,058,253 B2

7

is performed by at least the height (H) of the B+ tree in order
to correct/insert/delete any leaf node.

Generally, in a NAND flash memory, a write operation
requires more time than a read operation, and the number of
write operations that may be formed on one block is limited.
Therefore, a great deal of time may be required to correct an
indexing scheme, and also the lifetime of the NAND flash
memory may be shortened.

FIG. 3 is adiagram illustrating a scheme for storing a p-tree
in a flash memory according to some embodiments of the
present invention. Referring to FIG. 3, in a p-tree (e), a leaf
node and index nodes related to the leaf node are written in the
same page. For example, a leat node F and index nodes C and
A, i.e., parent nodes of the leaf node F are stored in a page P1.
Likewise, a leafnode E and index nodes B and A are stored in
apage P2, and a leaf node D and the index nodes B and A are
stored in a page P3. However, when the leaf node E and the
index nodes B and C are stored in the page P2, because the
index node A designates the page storing the index nodes B
and C, the index node A stored in the page P1 becomes
invalid. Likewise, when the leaf node D and the index nodes
B and A are stored in the page P3, because a pointer of the
index node A designates the pages P1 and P2 storing the index
nodes C and B and also a pointer of the index node B desig-
nates the pages P3 and P2 storing the leaf nodes D and E, the
index node B stored in the page P2 becomes invalid. For
example, there is no access to the index node B stored in the
page P2. In other words, because a search is made in the order
from the index node A (i.e., the root node of the last page P3)
to the child nodes, there is no actual access to the index node
A stored in the page P1 and to the index nodes A and B stored
in the page P2.

FIG. 4 is a conceptual diagram illustrating a scheme for
correcting the leaf node of the p-tree stored in the flash
memory illustrated in FIG. 3, according to some embodi-
ments of the present invention. Referring to FIG. 4, not only
a leaf node F but also the index nodes C and A are corrected
in order to correct the leaf node F. The reason for this is that
if a corrected leafnode F' is stored in a new page P4, the index
node C designating the leaf node F' is corrected to an index
node C' with a corrected pointer to designate the page P4
instead of the page P1. The index node A is corrected to an
index node A' with a corrected pointer to designate the index
node C'. Herein, the prime denotation (") means that the key
value/pointer of the leaf/index node has been corrected.

The corrected nodes F', C' and A" are stored in the page P4.
That is, a write operation is performed on only one page P4 in
order to correct one leaf node F. Therefore, the time taken to
correct the leaf node may be reduced and the use of the flash
memory may be reduced. This indexing scheme of the present
invention may reduce the number of write operations on the
flash memory, thus making it possible extend the lifetime of
the flash memory.

When a search is to be made for a leaf node in a flash
memory (h) illustrated in FIG. 4, the search is made in the
order from the root node A' stored in the last page P4 to the
child nodes. That is, the root node A' designates the index
nodes B and C', the index node B designates the leaf nodes D
and E, and the index node C' designates the leaf node F'. This
indexing scheme is suitable for a search scheme of a i-tree.

FIG. 5 is a conceptual diagram illustrating a scheme for
inserting a new leaf node in the p-tree stored in the flash
memory illustrated in FIG. 3, according to some embodi-
ments of the present invention. When a leaf node G is to be
inserted, the index nodes C and A (i.e., the parent nodes
related to the leaf node G) must be corrected. Referring to
FIG. 5, the corrected index nodes C' and A' and the leaf node

10

15

20

25

30

35

40

45

50

55

60

65

8

G inserted in a p-tree (i) are stored in a page P4 of a flash
memory (j). The corrected index node C' includes a pointer
for designating the page P4 storing the leaf node G and the
page P1 storing the leaf node F.

It can be seen from the above that the new leaf node may be
inserted by a one-time write operation. If the index node C'
becomes full after the insertion of the new leaf node G, the
index node C' may be split. This will be described in detail
below.

FIG. 6 is a conceptual diagram illustrating a scheme for
deleting a leaf node of the p-tree stored in the flash memory
illustrated in FIG. 3, according to some embodiments of the
present invention. Referring to FIG. 6, when the leaf node E
is to be deleted from a p-tree (k), the index nodes Band A (i.e.,
the parent nodes related to the leafnodes E) are corrected. The
corrected index nodes B' and A' related to the leaf node E
deleted from the p-tree (k) are stored in the page P4. The
corrected index node B' designates the page P3 storing the
leaf node D, and the corrected index node A' designates the
corrected index node B' and the index node C. The corrected
index nodes A' and B' are stored in the page P5 of a flash
memory (1).

FIG. 7 is a conceptual diagram illustrating a scheme for
deleting a leaf node of the p-tree stored in the flash memory
illustrated in FIG. 6, according to some embodiments of the
present invention. When a leaf node D is to be deleted from a
p-tree (m), the index nodes B and A (i.e., the parent nodes
related to the leaf node E) are corrected. Referring to FIG. 6,
if the leaf node D is deleted from the p-tree (m), the index
node B does not designate any leaf node. Therefore, the index
node B without a child node is deleted. Because the index
node A (i.e., the root node) designates only the page P5
storing the index node C, the index node C may be corrected
to a root node. For example, the index node C is corrected to
aroot node pointing to the leafnodes F and G in pages P1 and
P4.

As illustrated in FIGS. 6 and 7, the operation for deleting
the leaf node may be achieved by a one-time write operation
on the flash memory. The time taken to delete the leaf node
may be reduced, and the use of the flash memory may be
reduced. An indexing scheme according to some embodi-
ments of the present invention may reduce the number of
write operations on the flash memory, which may extend the
lifetime of the flash memory.

As described above, the correction, insertion or deletion
operations on the leaf node of the p-tree are sequentially
performed in the order from the leaf node to the root node, and
the index nodes (i.e., the non-leaf nodes related to the cor-
rected, inserted or deleted leaf node) are stored in one page.
Therefore, a page of the flash memory must be designed to be
able to store all the nodes from the leaf node to the root node.

FIG. 8 is a diagram illustrating that the maximum storable
size of a leaf/index node stored in one page changes with an
increase in height (H) in some embodiments of the present
invention. Referring to FI1G. 8, when a page of a flash memory
has a size 0f 4096 bytes, if the height (H) is 1, a root node 811
also has a size 0f 4096 bytes. If the height (H) is 2, aroot node
821 has a size 0of 2048 bytes and aleaf node 822 also has a size
ot 2048 bytes. If the height (H) is 3, a root node 831 and an
index node 832 each has a size of 1024 bytes and a leaf node
833 has a size 0f 2048 bytes. If the height (H) is 4; aroot node
841 and an index node 842 each has a size of 512 bytes, an
index node 843 has a size of 1024 bytes, and a leaf node 844
has a size of 2048 bytes.

With an increase in the height (H), the sizes of the leaf
nodes 822, 833 and 844 are maintained at 2048 bytes, while
the sizes of the root nodes 811 821 and 831 decrease by 4. It

US 9,058,253 B2

9

can be seen that when the p-tree is stored in the flash memory,
the maximum height of the p-tree is determined by the data
size of the root node and the size of a page of the flash
memory.

The maximum sizes of the index/leaf nodes vary depend-
ing on the levels in the tree. For example, if the height (H) is
4; the leaf node 844 of level 4 has a maximum size of 2048
bytes, the index node 843 of level 3 has a maximum size of
1024 bytes, the index node 842 oflevel 2 has a maximum size
of' 512 bytes, and the root node 841 of level 1 has a maximum
size of 512 bytes.

A flash memory may be built in or connected to various
electronic devices such as personal computers, notebook
computers, digital music players, digital cameras, and cellu-
lar phones. A flash memory built in or connected to the elec-
tronic device may be controlled by a processor in the elec-
tronic device.

FIG. 9A is a diagram illustrating an example of a p-tree
including a root node and a leaf node. FIG. 9B is a diagram
illustrating an exemplary process for inserting a key value in
the leaf node of the p-tree illustrated in FIG. 9A. In the
example illustrated in FIG. 9B, the number of key values of a
root node or a leaf node, which may be stored in a page of a
flash memory, is up to 100. FIG. 9C is a diagram illustrating
a changed pi-tree resulting from the key value insertion pro-
cess illustrated in FIG. 9B. FIG. 10 is a flowchart illustrating
a process for inserting a key value in a leaf node of a p-tree
under the control of a processor.

Referring to FIG. 9B and 10, akey value is inserted in a leaf
node X2 stored in a page P1 of a flash memory (operation
1000). Because the leaf node X2, in which the key value is to
be inserted, is full (the number of stored key values/the maxi-
mum number of storable key values=50/50), the leaf node X2
is divided into two leaf nodes X21 and X22 and the two leaf
nodes X21 and X22 are temporarily stored in two buffer
memories M11 and M12. Herein, a newly inserted leaf node
is stored in the leaf node X21 of the buffer memory M11, and
a root node X1' designating the new leaf nodes X21 and X22
is stored in the buffer memory M12.

The number of pointers included in a root node X1 stored
in the previous page P11 is 49/50. The leaf node X2 is divided
into the leaf nodes X21 and X22, and a new pointer is added
to designate the leaf node X21. Thus, 50/50 pointers are
included in the root node X1'".

Because the root node X1'is full (operation 1010), an index
node X1'is divided into two index nodes X11 and X12 (opera-
tion 1020). The height (H) of the pi-tree increases by 1 (opera-
tion 1030). The index node designating the leaf nodes X21
and X22 is stored in a page P13 of the flash memory, and the
index node X12 is stored in a page P14. A new root X0 is
generated to designate the index nodes X11 and X12. The root
node X0 is stored in the page P14.

In this way, if a leaf node is full when a new key value is
inserted in the leaf node, the leaf node is divided by a division
operation. If aroot nodeis full by the division of the leafnode,
the root node is divided into two index nodes and a new root
node is generated (operation 1040). An indexing scheme
according to some embodiments of the present invention may
perform a minimum write operation even when the leaf node
or the root node is full by the insertion of a new key value.
Also, an indexing scheme according to some embodiments of
the present invention may be designed such that only direct
descendent nodes are stored in a page of the flash memory.
Thus, an operation such as garbage collection may be rela-
tively easily performed. For example, by performing a valid-
ity test on only the lowest level node (leaf node) in a page, the
validity of the entire page may be verified.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 11A is a diagram illustrating an example of a p-tree
for describing a key value deletion scheme for a p-tree. FIG.
11B is a diagram illustrating an exemplary process for delet-
ing a key value from any leaf node of the p-tree illustrated in
FIG. 11A. In the example illustrated in FIG. 11B, the number
of key values of a root node or a leaf node, which may be
stored in a page of a flash memory, is up to 100. FIG. 11C is
a diagram illustrating a changed p-tree structure resulting
from the key value deletion process for the pi-tree illustrated in
FIG. 11A. FIG. 12 is a flowchart illustrating a process for
deleting a key value from a leaf node of a p-tree under the
control of a processor.

Referring to FIGS. 11B and 12, a leaf node Y5 is deleted
(operation 1200). If there is no key value in the leaf node Y5
after akey value is deleted from the leafnode Y5, the leaf node
Y5 is deleted. If the leaf node is deleted, there is no child node
of an index node Y3 and a root node Y1 has only one child
node, i.e., an index node Y2. A root node Y1' corrected to
designate only an index node Y2 is stored in a buffer memory
M21.

When the root node Y1' has one child node (operation
1210), the height (H) of the p-tree decreases by 1. In the
example illustrated in FIG. 11B, the height (H) of the p-tree
decreases from 3 to 2 (operation 1220). Consequently, the
index node Y2 is corrected to a root node Y2' and is stored in
a page P23 of a flash memory (operation 1230). Therefore,
after the key value of the leaf node Y2 is deleted, the p-tree
illustrated in FIG. 11A is changed to have a leaf node Y4 and
a root node Y2' as illustrated in FIG. 11C.

As described above, an indexing scheme according to
some embodiments of the present invention may limit the
sizes of index/leaf nodes of a pi-tree, thereby making it pos-
sible to store a leaf node and parent nodes (e.g., an index node
and a root node) related to the leafnode in one page of a flash
memory. Therefore, a data write operation on the flash
memory may be reduced when the node of the p-tree is
corrected, inserted or deleted. Thus, the lifetime of the flash
memory may be extended. When the sizes of the index/leaf
nodes of the p-tree are limited, the height (H) of the p-tree
may increase. However, because the read operation of the
flash memory may be faster than the write operation, the
speed of the indexing scheme may be increased under various
workload conditions.

FIG. 13 is a block diagram of an electronic device using an
indexing scheme according to some embodiments of the
present invention. Referring to FIG. 13, an electronic device
1300 includes a processor 1310, a display 1320, a keypad
1330, a flash memory 1340, a read only memory (ROM)
1350, and a random access memory (RAM) 1360 that are
connected with a system bus 1301. The electronic device
1300 stores a file system in the flash memory 1340. Herein,
the flash memory 1340 uses the indexing scheme of the
present invention based on a pi-tree structure. Examples of the
electronic device 1300 include digital music players, digital
cameras, cellular phones, portable multimedia players
(PMPs), and PlayStations. According to an indexing scheme
along the lines described above, the processor 1310 may store
aleafnode of a p-tree and index nodes related to the leaf node
in one page of the flash memory 1340, and may perform a
correction, insertion or deletion operation on the leaf/index
node.

FIG. 14 is a block diagram of a memory system using an
indexing scheme according to some embodiments of the
present invention. Referring to FIG. 14, a memory card 1420
is connected to a host 1410. The memory card 1420 includes
a memory controller 1422 and a flash memory 1424. The
memory controller 1422 provides an interface between the

US 9,058,253 B2

11

host 1410 and the flash memory 1424. The memory controller
1422 and the flash memory 1424 is constructed in one chip
and may be implemented in a compact flash, a smart media, a
memory stick, a secure digital (SD) card, a multimedia card,
etc. In the above memory system, the host 1410 may access
the flash memory 1424 according to an indexing scheme
along lines described above.

FIG. 15 is a block diagram of another electronic device
using an indexing scheme according to some embodiments of
the present invention.

Referring to FIG. 15, an electronic device 1500 includes a
solid state disk (SSD) 1540 instead of the flash memory 1340
of'the electronic device 1300 illustrated in FIG. 13. The other
structures and operations of the electronic device 1500 are
similar to those of the electronic device 1300. Using an index-
ing scheme along lines described above, a processor 1510 of
the electronic device 1500 may store a leaf node of a p-tree
and index nodes related to the leaf node in one page of the
SSD 1540, and may perform a correction, insertion or dele-
tion operation on the leaf/index node.

The foregoing is illustrative of the present invention and is
not to be construed as limiting thereof. Although a few exem-
plary embodiments of this invention have been described,
those skilled in the art will readily appreciate that many
modifications are possible in the exemplary embodiments
without materially departing from the novel teachings and
advantages of this invention. Accordingly, all such modifica-
tions are intended to be included within the scope of this
invention as defined in the claims. Therefore, it is to be under-
stood that the foregoing is illustrative of the present invention
and is not to be construed as limited to the specific embodi-
ments disclosed, and that modifications to the disclosed
embodiments, as well as other embodiments, are intended to
be included within the scope of the appended claims.

What is claimed is:
1. A method of storing a tree data structure in a flash
memory device, the method comprising:
storing a leaf node and an index node comprising a pointer
to the leaf node in a same page of the flash memory
device;
wherein the index node and the leafnode comprise a first
index node and first leaf node of a first branch from a
higher-level node shared with a second branch com-
prising a second index node and a second leaf node;
wherein storing a leaf node and an index node compris-
ing a pointer to the leaf node in a same page of the

10

15

20

25

30

35

40

45

12

flash memory comprises storing the first leatnode and
the first index node in a first page; and

wherein the method further comprises: storing the
higher-level node in the first page;

storing the second leaf node and the second index node
in a second page;

storing a modified version of the leaf node and a modified

version of the index node in a new page of the flash
memory device, wherein the modified version of the leaf
node comprises a new key value;

dividing the leafnode into a first leaf node and a second leaf

node if the leaf node is full;

inserting a new key value in one of'the first and second leaf

nodes;

detecting that removal of a key value from the first leaf

node would result in no key values remaining in the first
leaf node and that the first index node includes no other
pointer to a leaf node;

and responsively storing a modified version of the second

index node in a third page.

2. The method of claim 1, wherein storing a modified
version of the second index node in a third page eliminates the
higher-order node from the tree data structure.

3. The method of claim 1, wherein storing a modified
version of the leaf node and a modified version of the index
node in a new page of the flash memory device comprises:

dividing the leafnode into a first leaf node and a second leaf

node if the leaf node is full;

inserting the new key value in one of the first and second

leaf nodes; and

storing the first and second leaf nodes in respective new

pages of the flash memory.

4. The method of claim 3, wherein storing a modified
version of the leaf node and a modified version of the index
node in a new page of the flash memory device further com-
prises:

dividing the index node into a first index node and a second

index node if the index node is full; generating a higher-
level index node pointing to the first and second index
nodes; storing the first index node in a first one of the
new pages; and storing the second index node and the
higher-level index node in a second one of new pages.

5. The method of claim 1, method of storing a tree data
structure in a flash memory device, the method comprising:

wherein the modified version of the leaf node lacks a key

value present in the original leaf node.

#* #* #* #* #*

